Software Design Document (SDD)
Version: 1.0 Date: October 08, 2025 SPDX-License-Identifier: BSD-3-Clause License File: See the LICENSE file in the project root. Copyright: © 2025 Michael Gardner, A Bit of Help, Inc. Authors: Michael Gardner, Claude Code Status: Active
1. Introduction
1.1 Purpose
This Software Design Document (SDD) describes the architectural and detailed design of the Adaptive Pipeline system. It provides technical specifications for developers implementing, maintaining, and extending the system.
Intended Audience:
- Software developers implementing features
- Technical architects reviewing design decisions
- Code reviewers evaluating pull requests
- New team members onboarding to the codebase
1.2 Scope
This document covers the design of a high-performance file processing pipeline implemented in Rust, following Domain-Driven Design (DDD), Clean Architecture, and Hexagonal Architecture principles.
Covered Topics:
- System architecture and layer organization
- Component interactions and dependencies
- Data structures and algorithms
- Interface specifications
- Design patterns and rationale
- Technology stack and tooling
- Cross-cutting concerns
Not Covered:
- Requirements (see SRS)
- Testing strategies (see Test Plan)
- Deployment procedures
- Operational procedures
1.3 Design Philosophy
Core Principles:
- Domain-Driven Design: Business logic isolated in domain layer
- Clean Architecture: Dependencies point inward toward domain
- Hexagonal Architecture: Ports and adapters isolate external concerns
- SOLID Principles: Single responsibility, dependency inversion
- Rust Idioms: Zero-cost abstractions, ownership, type safety
Design Goals:
- Correctness: Type-safe, compiler-verified invariants
- Performance: Async I/O, parallel processing, minimal allocations
- Maintainability: Clear separation of concerns, testable components
- Extensibility: Plugin architecture for custom stages
- Observability: Comprehensive metrics and logging
1.4 References
- Software Requirements Specification
- Architecture Overview
- Domain Model
- Clean Architecture: Robert C. Martin, 2017
- Domain-Driven Design: Eric Evans, 2003
2. System Architecture
2.1 Architectural Overview
The system follows a layered architecture with strict dependency rules:
┌─────────────────────────────────────────────┐
│ Presentation Layer │ ← CLI, Future APIs
│ (bootstrap, cli, config, logger) │
├─────────────────────────────────────────────┤
│ Application Layer │ ← Use Cases
│ (commands, services, orchestration) │
├─────────────────────────────────────────────┤
│ Domain Layer (Core) │ ← Business Logic
│ (entities, value objects, services) │
├─────────────────────────────────────────────┤
│ Infrastructure Layer │ ← External Concerns
│ (repositories, adapters, file I/O) │
└─────────────────────────────────────────────┘
Dependency Rule: Inner layers know nothing about outer layers
2.2 Layered Architecture Details
2.2.1 Presentation Layer (Bootstrap Crate)
Responsibilities:
- CLI argument parsing and validation
- Application configuration
- Logging and console output
- Exit code handling
- Platform-specific concerns
Key Components:
cli::parser
- Command-line argument parsingcli::validator
- Input validation and sanitizationconfig::AppConfig
- Application configurationlogger::Logger
- Logging abstractionplatform::Platform
- Platform detection
Design Decisions:
- Separate crate for clean separation
- No domain dependencies
- Generic, reusable components
2.2.2 Application Layer
Responsibilities:
- Orchestrate use cases
- Coordinate domain services
- Manage transactions
- Handle application-level errors
Key Components:
use_cases::ProcessFileUseCase
- File processing orchestrationuse_cases::RestoreFileUseCase
- File restoration orchestrationcommands::ProcessFileCommand
- Command pattern implementationcommands::RestoreFileCommand
- Restoration command
Design Patterns:
- Command Pattern: Encapsulate requests as objects
- Use Case Pattern: Application-specific business rules
- Dependency Injection: Services injected via constructors
Key Abstractions:
#![allow(unused)] fn main() { #[async_trait] pub trait UseCase<Input, Output> { async fn execute(&self, input: Input) -> Result<Output>; } }
2.2.3 Domain Layer
Responsibilities:
- Core business logic
- Domain rules and invariants
- Domain events
- Pure functions (no I/O)
Key Components:
Entities:
Pipeline
- Aggregate root for pipeline configurationPipelineStage
- Individual processing stageFileMetadata
- File information and state
Value Objects:
ChunkSize
- Validated chunk sizePipelineId
- Unique pipeline identifierStageType
- Type-safe stage classification
Domain Services:
CompressionService
- Compression/decompression logicEncryptionService
- Encryption/decryption logicChecksumService
- Integrity verification logicFileIOService
- File operations abstraction
Invariants Enforced:
#![allow(unused)] fn main() { impl Pipeline { pub fn new(name: String, stages: Vec<PipelineStage>) -> Result<Self> { // Invariant: Name must be non-empty if name.trim().is_empty() { return Err(PipelineError::InvalidName); } // Invariant: At least one stage required if stages.is_empty() { return Err(PipelineError::NoStages); } // Invariant: Stages must have unique, sequential order validate_stage_order(&stages)?; Ok(Pipeline { name, stages }) } } }
2.2.4 Infrastructure Layer
Responsibilities:
- External system integration
- Data persistence
- File I/O operations
- Third-party library adapters
Key Components:
Repositories:
SqlitePipelineRepository
- SQLite-based persistenceInMemoryPipelineRepository
- Testing/development
Adapters:
BrotliCompressionAdapter
- Brotli compressionZstdCompressionAdapter
- Zstandard compressionAesGcmEncryptionAdapter
- AES-256-GCM encryptionSha256ChecksumAdapter
- SHA-256 hashing
File I/O:
BinaryFileWriter
- .adapipe format writerBinaryFileReader
- .adapipe format readerChunkedFileReader
- Streaming file readerChunkedFileWriter
- Streaming file writer
2.3 Hexagonal Architecture (Ports & Adapters)
Primary Ports (driving adapters - how the world uses us):
- CLI commands
- Future: REST API, gRPC API
Secondary Ports (driven adapters - how we use the world):
#![allow(unused)] fn main() { // Domain defines the interface (port) #[async_trait] pub trait CompressionPort: Send + Sync { async fn compress(&self, data: &[u8]) -> Result<Vec<u8>>; async fn decompress(&self, data: &[u8]) -> Result<Vec<u8>>; } // Infrastructure provides implementations (adapters) pub struct BrotliAdapter { quality: u32, } #[async_trait] impl CompressionPort for BrotliAdapter { async fn compress(&self, data: &[u8]) -> Result<Vec<u8>> { // Brotli-specific implementation } } }
Benefits:
- Domain layer testable in isolation
- Easy to swap implementations
- Third-party dependencies isolated
- Technology-agnostic core
3. Component Design
3.1 Pipeline Processing Engine
Architecture:
┌──────────────┐
│ Pipeline │ (Aggregate Root)
│ │
│ - name │
│ - stages[] │
│ - metadata │
└──────┬───────┘
│ has many
▼
┌──────────────┐
│PipelineStage │
│ │
│ - name │
│ - type │
│ - config │
│ - order │
└──────────────┘
Processing Flow:
#![allow(unused)] fn main() { pub struct PipelineProcessor { context: Arc<PipelineContext>, } impl PipelineProcessor { pub async fn process(&self, pipeline: &Pipeline, input: PathBuf) -> Result<PathBuf> { // 1. Validate input file let metadata = self.validate_input(&input).await?; // 2. Create output file let output = self.create_output_file(&pipeline.name).await?; // 3. Process in chunks let chunks = self.chunk_file(&input, self.context.chunk_size).await?; // 4. Execute stages on each chunk (parallel) for chunk in chunks { let processed = self.execute_stages(pipeline, chunk).await?; self.write_chunk(&output, processed).await?; } // 5. Write metadata and finalize self.finalize(&output, metadata).await?; Ok(output) } async fn execute_stages(&self, pipeline: &Pipeline, chunk: Chunk) -> Result<Chunk> { let mut data = chunk.data; for stage in &pipeline.stages { data = match stage.stage_type { StageType::Compression => { self.context.compression.compress(&data).await? } StageType::Encryption => { self.context.encryption.encrypt(&data).await? } StageType::Checksum => { let hash = self.context.checksum.hash(&data).await?; self.context.store_hash(chunk.id, hash); data // Checksum doesn't transform data } StageType::PassThrough => data, }; } Ok(Chunk { data, ..chunk }) } } }
3.2 Chunk Processing Strategy
Design Rationale:
- Large files cannot fit in memory
- Streaming processing enables arbitrary file sizes
- Parallel chunk processing utilizes multiple cores
- Fixed chunk size simplifies memory management
Implementation:
#![allow(unused)] fn main() { pub const DEFAULT_CHUNK_SIZE: usize = 1_048_576; // 1 MB pub struct Chunk { pub id: usize, pub data: Vec<u8>, pub is_final: bool, } pub struct ChunkedFileReader { file: File, chunk_size: usize, chunk_id: usize, } impl ChunkedFileReader { pub async fn read_chunk(&mut self) -> Result<Option<Chunk>> { let mut buffer = vec![0u8; self.chunk_size]; let bytes_read = self.file.read(&mut buffer).await?; if bytes_read == 0 { return Ok(None); } buffer.truncate(bytes_read); let chunk = Chunk { id: self.chunk_id, data: buffer, is_final: bytes_read < self.chunk_size, }; self.chunk_id += 1; Ok(Some(chunk)) } } }
Parallel Processing:
#![allow(unused)] fn main() { use tokio::task::JoinSet; pub async fn process_chunks_parallel( chunks: Vec<Chunk>, stage: &dyn ProcessingStage, ) -> Result<Vec<Chunk>> { let mut join_set = JoinSet::new(); for chunk in chunks { let stage = Arc::clone(&stage); join_set.spawn(async move { stage.process(chunk).await }); } let mut results = Vec::new(); while let Some(result) = join_set.join_next().await { results.push(result??); } // Sort by chunk ID to maintain order results.sort_by_key(|c| c.id); Ok(results) } }
3.3 Repository Pattern Implementation
Interface (Port):
#![allow(unused)] fn main() { #[async_trait] pub trait PipelineRepository: Send + Sync { async fn save(&self, pipeline: &Pipeline) -> Result<()>; async fn find_by_id(&self, id: &str) -> Result<Option<Pipeline>>; async fn find_by_name(&self, name: &str) -> Result<Option<Pipeline>>; async fn delete(&self, id: &str) -> Result<()>; async fn list_all(&self) -> Result<Vec<Pipeline>>; } }
SQLite Implementation:
#![allow(unused)] fn main() { pub struct SqlitePipelineRepository { pool: Arc<SqlitePool>, } #[async_trait] impl PipelineRepository for SqlitePipelineRepository { async fn save(&self, pipeline: &Pipeline) -> Result<()> { let mut tx = self.pool.begin().await?; // Insert pipeline sqlx::query!( "INSERT INTO pipelines (id, name, created_at) VALUES (?, ?, ?)", pipeline.id, pipeline.name, pipeline.created_at ) .execute(&mut *tx) .await?; // Insert stages for stage in &pipeline.stages { sqlx::query!( "INSERT INTO pipeline_stages (pipeline_id, name, type, order_num, config) VALUES (?, ?, ?, ?, ?)", pipeline.id, stage.name, stage.stage_type.to_string(), stage.order, serde_json::to_string(&stage.configuration)? ) .execute(&mut *tx) .await?; } tx.commit().await?; Ok(()) } } }
3.4 Adapter Pattern for Algorithms
Design: Each algorithm family has a common interface with multiple implementations.
Compression Adapters:
#![allow(unused)] fn main() { #[async_trait] pub trait CompressionAdapter: Send + Sync { fn name(&self) -> &str; async fn compress(&self, data: &[u8]) -> Result<Vec<u8>>; async fn decompress(&self, data: &[u8]) -> Result<Vec<u8>>; } pub struct BrotliAdapter { quality: u32, } #[async_trait] impl CompressionAdapter for BrotliAdapter { fn name(&self) -> &str { "brotli" } async fn compress(&self, data: &[u8]) -> Result<Vec<u8>> { let mut output = Vec::new(); let mut compressor = brotli::CompressorReader::new( data, 4096, self.quality, 22 ); compressor.read_to_end(&mut output)?; Ok(output) } async fn decompress(&self, data: &[u8]) -> Result<Vec<u8>> { let mut output = Vec::new(); let mut decompressor = brotli::Decompressor::new(data, 4096); decompressor.read_to_end(&mut output)?; Ok(output) } } }
Factory Pattern:
#![allow(unused)] fn main() { pub struct AdapterFactory; impl AdapterFactory { pub fn create_compression( algorithm: &str ) -> Result<Box<dyn CompressionAdapter>> { match algorithm.to_lowercase().as_str() { "brotli" => Ok(Box::new(BrotliAdapter::new(11))), "zstd" => Ok(Box::new(ZstdAdapter::new(3))), "gzip" => Ok(Box::new(GzipAdapter::new(6))), "lz4" => Ok(Box::new(Lz4Adapter::new())), _ => Err(PipelineError::UnsupportedAlgorithm( algorithm.to_string() )), } } } }
4. Data Design
4.1 Domain Entities
Pipeline Entity:
#![allow(unused)] fn main() { pub struct Pipeline { id: PipelineId, name: String, stages: Vec<PipelineStage>, created_at: DateTime<Utc>, updated_at: DateTime<Utc>, } impl Pipeline { // Factory method enforces invariants pub fn new(name: String, stages: Vec<PipelineStage>) -> Result<Self> { // Validation logic } // Domain behavior pub fn add_stage(&mut self, stage: PipelineStage) -> Result<()> { // Ensure stage order is valid // Ensure no duplicate stage names } pub fn execute_order(&self) -> &[PipelineStage] { &self.stages } pub fn restore_order(&self) -> Vec<PipelineStage> { self.stages.iter().rev().cloned().collect() } } }
PipelineStage Entity:
#![allow(unused)] fn main() { pub struct PipelineStage { name: String, stage_type: StageType, configuration: StageConfiguration, order: usize, } pub enum StageType { Compression, Encryption, Checksum, PassThrough, } pub struct StageConfiguration { pub algorithm: String, pub parameters: HashMap<String, String>, pub parallel_processing: bool, pub chunk_size: Option<usize>, } }
4.2 Value Objects
ChunkSize:
#![allow(unused)] fn main() { #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub struct ChunkSize(usize); impl ChunkSize { pub const MIN: usize = 1024; // 1 KB pub const MAX: usize = 100 * 1024 * 1024; // 100 MB pub const DEFAULT: usize = 1_048_576; // 1 MB pub fn new(size: usize) -> Result<Self> { if size < Self::MIN || size > Self::MAX { return Err(PipelineError::InvalidChunkSize { size, min: Self::MIN, max: Self::MAX }); } Ok(ChunkSize(size)) } pub fn value(&self) -> usize { self.0 } } }
4.3 Database Schema
Schema Management: Using sqlx
with migrations
-- migrations/20250101000000_initial_schema.sql
-- Pipelines table: stores pipeline configurations
CREATE TABLE IF NOT EXISTS pipelines (
id TEXT PRIMARY KEY,
name TEXT NOT NULL UNIQUE,
archived BOOLEAN NOT NULL DEFAULT false,
created_at TEXT NOT NULL,
updated_at TEXT NOT NULL
);
-- Pipeline configuration: key-value pairs for pipeline settings
CREATE TABLE IF NOT EXISTS pipeline_configuration (
pipeline_id TEXT NOT NULL,
key TEXT NOT NULL,
value TEXT NOT NULL,
archived BOOLEAN NOT NULL DEFAULT FALSE,
created_at TEXT NOT NULL,
updated_at TEXT NOT NULL,
PRIMARY KEY (pipeline_id, key),
FOREIGN KEY (pipeline_id) REFERENCES pipelines(id) ON DELETE CASCADE
);
-- Pipeline stages: defines processing stages in a pipeline
CREATE TABLE IF NOT EXISTS pipeline_stages (
id TEXT PRIMARY KEY,
pipeline_id TEXT NOT NULL,
name TEXT NOT NULL,
stage_type TEXT NOT NULL,
enabled BOOLEAN NOT NULL DEFAULT TRUE,
stage_order INTEGER NOT NULL,
algorithm TEXT NOT NULL,
parallel_processing BOOLEAN NOT NULL DEFAULT FALSE,
chunk_size INTEGER,
archived BOOLEAN NOT NULL DEFAULT FALSE,
created_at TEXT NOT NULL,
updated_at TEXT NOT NULL,
FOREIGN KEY (pipeline_id) REFERENCES pipelines(id) ON DELETE CASCADE
);
-- Stage parameters: configuration for individual stages
CREATE TABLE IF NOT EXISTS stage_parameters (
stage_id TEXT NOT NULL,
key TEXT NOT NULL,
value TEXT NOT NULL,
archived BOOLEAN NOT NULL DEFAULT FALSE,
created_at TEXT NOT NULL,
updated_at TEXT NOT NULL,
PRIMARY KEY (stage_id, key),
FOREIGN KEY (stage_id) REFERENCES pipeline_stages(id) ON DELETE CASCADE
);
-- Processing metrics: tracks pipeline execution metrics
CREATE TABLE IF NOT EXISTS processing_metrics (
pipeline_id TEXT PRIMARY KEY,
bytes_processed INTEGER NOT NULL DEFAULT 0,
bytes_total INTEGER NOT NULL DEFAULT 0,
chunks_processed INTEGER NOT NULL DEFAULT 0,
chunks_total INTEGER NOT NULL DEFAULT 0,
start_time_rfc3339 TEXT,
end_time_rfc3339 TEXT,
processing_duration_ms INTEGER,
throughput_bytes_per_second REAL NOT NULL DEFAULT 0.0,
compression_ratio REAL,
error_count INTEGER NOT NULL DEFAULT 0,
warning_count INTEGER NOT NULL DEFAULT 0,
input_file_size_bytes INTEGER NOT NULL DEFAULT 0,
output_file_size_bytes INTEGER NOT NULL DEFAULT 0,
input_file_checksum TEXT,
output_file_checksum TEXT,
FOREIGN KEY (pipeline_id) REFERENCES pipelines(id) ON DELETE CASCADE
);
-- Indexes for performance
CREATE INDEX IF NOT EXISTS idx_pipeline_stages_pipeline_id ON pipeline_stages(pipeline_id);
CREATE INDEX IF NOT EXISTS idx_pipeline_stages_order ON pipeline_stages(pipeline_id, stage_order);
CREATE INDEX IF NOT EXISTS idx_pipeline_configuration_pipeline_id ON pipeline_configuration(pipeline_id);
CREATE INDEX IF NOT EXISTS idx_stage_parameters_stage_id ON stage_parameters(stage_id);
CREATE INDEX IF NOT EXISTS idx_pipelines_name ON pipelines(name) WHERE archived = false;
4.4 Binary File Format (.adapipe)
Format Specification:
.adapipe File Structure:
┌────────────────────────────────────┐
│ Magic Number (4 bytes): "ADPI" │
│ Version (2 bytes): Major.Minor │
│ Header Length (4 bytes) │
├────────────────────────────────────┤
│ Header (JSON): │
│ - pipeline_name │
│ - stage_configs[] │
│ - original_filename │
│ - original_size │
│ - chunk_count │
│ - checksum_algorithm │
├────────────────────────────────────┤
│ Chunk 0: │
│ - Length (4 bytes) │
│ - Checksum (32 bytes) │
│ - Data (variable) │
├────────────────────────────────────┤
│ Chunk 1: ... │
├────────────────────────────────────┤
│ ... │
├────────────────────────────────────┤
│ Footer (JSON): │
│ - total_checksum │
│ - created_at │
└────────────────────────────────────┘
Implementation:
#![allow(unused)] fn main() { pub struct AdapipeHeader { pub pipeline_name: String, pub stages: Vec<StageConfig>, pub original_filename: String, pub original_size: u64, pub chunk_count: usize, pub checksum_algorithm: String, } pub struct BinaryFileWriter { file: File, } impl BinaryFileWriter { pub async fn write_header(&mut self, header: &AdapipeHeader) -> Result<()> { // Magic number self.file.write_all(b"ADPI").await?; // Version self.file.write_u8(1).await?; // Major self.file.write_u8(0).await?; // Minor // Header JSON let header_json = serde_json::to_vec(header)?; self.file.write_u32(header_json.len() as u32).await?; self.file.write_all(&header_json).await?; Ok(()) } pub async fn write_chunk(&mut self, chunk: &ProcessedChunk) -> Result<()> { self.file.write_u32(chunk.data.len() as u32).await?; self.file.write_all(&chunk.checksum).await?; self.file.write_all(&chunk.data).await?; Ok(()) } } }
5. Interface Design
5.1 Public API
Command-Line Interface:
# Process a file
pipeline process \
--input ./document.pdf \
--output ./document.adapipe \
--pipeline secure-archive \
--compress zstd \
--encrypt aes256gcm \
--key-file ./key.txt
# Restore a file
pipeline restore \
--input ./document.adapipe \
--output ./document.pdf \
--key-file ./key.txt
# List pipelines
pipeline list
# Create pipeline configuration
pipeline create \
--name my-pipeline \
--stages compress:zstd,encrypt:aes256gcm
Future: Library API:
use adaptive_pipeline_domain::entities::{Pipeline, PipelineStage, StageType, StageConfiguration}; use std::collections::HashMap; #[tokio::main] async fn main() -> Result<(), Box<dyn std::error::Error>> { // Create pipeline stages let compression_stage = PipelineStage::new( "compress".to_string(), StageType::Compression, StageConfiguration::new( "zstd".to_string(), HashMap::new(), false, ), 0, )?; let encryption_stage = PipelineStage::new( "encrypt".to_string(), StageType::Encryption, StageConfiguration::new( "aes256gcm".to_string(), HashMap::new(), false, ), 1, )?; // Create pipeline with stages let pipeline = Pipeline::new( "my-pipeline".to_string(), vec![compression_stage, encryption_stage], )?; // Process file (future implementation) // let processor = PipelineProcessor::new()?; // let output = processor.process(&pipeline, "input.txt").await?; println!("Pipeline created: {}", pipeline.name()); Ok(()) }
5.2 Internal APIs
Domain Service Interfaces:
#![allow(unused)] fn main() { #[async_trait] pub trait CompressionService: Send + Sync { async fn compress( &self, algorithm: &str, data: &[u8] ) -> Result<Vec<u8>>; async fn decompress( &self, algorithm: &str, data: &[u8] ) -> Result<Vec<u8>>; } #[async_trait] pub trait EncryptionService: Send + Sync { async fn encrypt( &self, algorithm: &str, data: &[u8], key: &[u8] ) -> Result<Vec<u8>>; async fn decrypt( &self, algorithm: &str, data: &[u8], key: &[u8] ) -> Result<Vec<u8>>; } }
6. Technology Stack
6.1 Core Technologies
Technology | Purpose | Version |
---|---|---|
Rust | Primary language | 1.75+ |
Tokio | Async runtime | 1.35+ |
SQLx | Database access | 0.7+ |
Serde | Serialization | 1.0+ |
Anyhow | Error handling | 1.0+ |
Clap | CLI parsing | 4.5+ |
6.2 Algorithms & Libraries
Compression:
- Brotli (
brotli
crate) - Zstandard (
zstd
crate) - Gzip (
flate2
crate) - LZ4 (
lz4
crate)
Encryption:
- AES-GCM (
aes-gcm
crate) - ChaCha20-Poly1305 (
chacha20poly1305
crate)
Hashing:
- SHA-256/SHA-512 (
sha2
crate) - BLAKE3 (
blake3
crate)
Testing:
- Criterion (benchmarking)
- Proptest (property testing)
- Mockall (mocking)
6.3 Development Tools
- Cargo: Build system and package manager
- Clippy: Linter
- Rustfmt: Code formatter
- Cargo-audit: Security auditing
- Cargo-deny: Dependency validation
- mdBook: Documentation generation
7. Design Patterns
7.1 Repository Pattern
Purpose: Abstract data persistence logic from domain logic.
Implementation: See Section 3.3
Benefits:
- Domain layer independent of storage mechanism
- Easy to swap SQLite for PostgreSQL or other storage
- Testable with in-memory implementation
7.2 Adapter Pattern
Purpose: Integrate third-party algorithms without coupling.
Implementation: See Section 3.4
Benefits:
- Easy to add new algorithms
- Algorithm selection at runtime
- Consistent interface across all adapters
7.3 Strategy Pattern
Purpose: Select algorithm implementation dynamically.
Example:
#![allow(unused)] fn main() { pub struct PipelineProcessor { compression_strategy: Box<dyn CompressionAdapter>, encryption_strategy: Box<dyn EncryptionAdapter>, } impl PipelineProcessor { pub fn new( compression: &str, encryption: &str ) -> Result<Self> { Ok(Self { compression_strategy: AdapterFactory::create_compression( compression )?, encryption_strategy: AdapterFactory::create_encryption( encryption )?, }) } } }
7.4 Builder Pattern
Purpose: Construct complex objects step by step.
Note: Builder pattern is a potential future enhancement. Current API uses direct construction.
Current API:
#![allow(unused)] fn main() { let pipeline = Pipeline::new( "my-pipeline".to_string(), vec![compression_stage, encryption_stage], )?; }
Potential Future Builder API:
#![allow(unused)] fn main() { // Not yet implemented - potential future enhancement let pipeline = Pipeline::builder() .name("my-pipeline") .add_stage(compression_stage) .add_stage(encryption_stage) .build()?; }
7.5 Command Pattern
Purpose: Encapsulate requests as objects for undo/redo, queueing.
Example:
#![allow(unused)] fn main() { #[async_trait] pub trait Command: Send + Sync { async fn execute(&self) -> Result<()>; } pub struct ProcessFileCommand { pipeline: Pipeline, input: PathBuf, output: PathBuf, } #[async_trait] impl Command for ProcessFileCommand { async fn execute(&self) -> Result<()> { // Processing logic } } }
8. Cross-Cutting Concerns
8.1 Error Handling
Strategy: Use anyhow::Result
for application errors, custom error types for domain errors.
#![allow(unused)] fn main() { #[derive(Debug, thiserror::Error)] pub enum PipelineError { #[error("Invalid pipeline name: {0}")] InvalidName(String), #[error("No stages defined")] NoStages, #[error("Invalid chunk size: {size} (must be {min}-{max})")] InvalidChunkSize { size: usize, min: usize, max: usize }, #[error("Stage order conflict at position {0}")] StageOrderConflict(usize), #[error("Unsupported algorithm: {0}")] UnsupportedAlgorithm(String), #[error("I/O error: {0}")] Io(#[from] std::io::Error), } }
8.2 Logging
Strategy: Structured logging with tracing.
#![allow(unused)] fn main() { use tracing::{info, warn, error, debug, instrument}; #[instrument(skip(self, data))] async fn process_chunk(&self, chunk_id: usize, data: &[u8]) -> Result<Vec<u8>> { debug!(chunk_id, size = data.len(), "Processing chunk"); let start = Instant::now(); let result = self.compress(data).await?; info!( chunk_id, original_size = data.len(), compressed_size = result.len(), duration_ms = start.elapsed().as_millis(), "Chunk compressed" ); Ok(result) } }
8.3 Metrics Collection
Strategy: Prometheus-style metrics.
#![allow(unused)] fn main() { pub struct PipelineMetrics { pub chunks_processed: AtomicUsize, pub bytes_processed: AtomicU64, pub compression_ratio: AtomicU64, pub processing_duration: Duration, } impl PipelineMetrics { pub fn record_chunk(&self, original_size: usize, compressed_size: usize) { self.chunks_processed.fetch_add(1, Ordering::Relaxed); self.bytes_processed.fetch_add( original_size as u64, Ordering::Relaxed ); let ratio = (compressed_size as f64 / original_size as f64 * 100.0) as u64; self.compression_ratio.store(ratio, Ordering::Relaxed); } } }
8.4 Security
Key Management:
- Keys never logged or persisted unencrypted
- Argon2 key derivation from passwords
- Secure memory wiping for key material
Input Validation:
- CLI inputs sanitized against injection
- File paths validated
- Chunk sizes bounded
Algorithm Selection:
- Only vetted, well-known algorithms
- Default to secure settings
- AEAD ciphers for authenticated encryption
9. Performance Considerations
9.1 Asynchronous I/O
Rationale: File I/O is the primary bottleneck. Async I/O allows overlap of CPU and I/O operations.
Implementation:
- Tokio async runtime
tokio::fs
for file operationstokio::io::AsyncRead
andAsyncWrite
traits
9.2 Parallel Processing
Chunk-level Parallelism:
#![allow(unused)] fn main() { use rayon::prelude::*; pub fn process_chunks_parallel( chunks: Vec<Chunk>, processor: &ChunkProcessor, ) -> Result<Vec<ProcessedChunk>> { chunks .par_iter() .map(|chunk| processor.process(chunk)) .collect() } }
9.3 Memory Management
Strategies:
- Fixed chunk size limits peak memory
- Streaming processing avoids loading entire files
- Buffer pooling for frequently allocated buffers
- Zero-copy where possible
9.4 Algorithm Selection
Performance Profiles:
Algorithm | Speed | Ratio | Memory |
---|---|---|---|
LZ4 | ★★★★★ | ★★☆☆☆ | ★★★★★ |
Zstd | ★★★★☆ | ★★★★☆ | ★★★★☆ |
Gzip | ★★★☆☆ | ★★★☆☆ | ★★★★☆ |
Brotli | ★★☆☆☆ | ★★★★★ | ★★★☆☆ |
10. Testing Strategy (Overview)
10.1 Test Organization
- Unit Tests:
#[cfg(test)]
modules in source files - Integration Tests:
tests/integration/
- E2E Tests:
tests/e2e/
- Benchmarks:
benches/
10.2 Test Coverage Goals
- Domain layer: 90%+ coverage
- Application layer: 80%+ coverage
- Infrastructure: 70%+ coverage (mocked external deps)
10.3 Testing Tools
- Mockall for mocking
- Proptest for property-based testing
- Criterion for benchmarking
- Cargo-tarpaulin for coverage
11. Future Enhancements
11.1 Planned Features
- Distributed Processing: Process files across multiple machines
- Cloud Integration: S3, Azure Blob, GCS support
- REST API: HTTP API for remote processing
- Plugin System: Dynamic loading of custom stages
- Web UI: Browser-based configuration and monitoring
11.2 Architectural Evolution
Phase 1 (Current): Single-machine CLI application
Phase 2: Library + CLI + REST API
Phase 3: Distributed processing with coordinator nodes
Phase 4: Cloud-native deployment with Kubernetes
12. Conclusion
This Software Design Document describes a robust, extensible file processing pipeline built on solid architectural principles. The design prioritizes:
- Correctness through type safety and domain-driven design
- Performance through async I/O and parallel processing
- Maintainability through clean architecture and separation of concerns
- Extensibility through ports & adapters and plugin architecture
The implementation follows Rust best practices and leverages the language's strengths in safety, concurrency, and zero-cost abstractions.
Appendix A: Glossary
Term | Definition |
---|---|
Aggregate | Domain entity that serves as consistency boundary |
AEAD | Authenticated Encryption with Associated Data |
Chunk | Fixed-size portion of file for streaming processing |
DDD | Domain-Driven Design architectural approach |
Port | Interface defined by application core |
Adapter | Implementation of port for external system |
Use Case | Application-specific business rule |
Value Object | Immutable object defined by its attributes |
Appendix B: Diagrams
See the following chapters for detailed diagrams: