Introduction

Version: 2.0.0 Date: October 08, 2025 SPDX-License-Identifier: BSD-3-Clause License File: See the LICENSE file in the project root. Copyright: © 2025 Michael Gardner, A Bit of Help, Inc. Authors: Michael Gardner Status: Draft

Welcome

Welcome to the Adaptive Pipeline documentation. This project is a high-performance, educational file processing pipeline built in Rust, demonstrating advanced software architecture patterns and modern Rust idioms.

What is This Project?

The Adaptive Pipeline is:

  • A File Processing System - Transform files through configurable stages (compression, encryption, integrity checking)
  • An Educational Resource - Learn advanced Rust patterns, DDD, Clean Architecture, and Hexagonal Architecture
  • Open Source - Licensed under BSD-3-Clause, contributions welcome

Who is This For?

  • Rust Developers learning advanced patterns
  • Contributors wanting to extend the pipeline
  • Students exploring software architecture
  • Engineers seeking secure file processing solutions

Documentation Structure

This documentation is organized for progressive learning:

  1. Getting Started - Quick start, installation, first pipeline
  2. Architecture - High-level system design
  3. Reference - Glossary and API links

For detailed technical documentation, see the Pipeline Developer Guide.

Getting Help

Let's get started!

Quick Start

Version: 0.1.0 Date: October 08, 2025 SPDX-License-Identifier: BSD-3-Clause License File: See the LICENSE file in the project root. Copyright: © 2025 Michael Gardner, A Bit of Help, Inc. Authors: Michael Gardner Status: Draft

Get up and running with the Adaptive Pipeline in 5 minutes.

Prerequisites

  • Rust 1.70 or later
  • SQLite 3.35 or later

Quick Installation

git clone https://github.com/abitofhelp/optimized_adaptive_pipeline_rs.git
cd optimized_adaptive_pipeline_rs
make build

Your First Pipeline

TODO: Add quick start example

Installation

Version: 0.1.0 Date: October 08, 2025 SPDX-License-Identifier: BSD-3-Clause License File: See the LICENSE file in the project root. Copyright: © 2025 Michael Gardner, A Bit of Help, Inc. Authors: Michael Gardner Status: Draft

Detailed installation instructions for all platforms.

System Requirements

TODO: Add system requirements

Building from Source

TODO: Add build instructions

Configuration

TODO: Add configuration instructions

Your First Pipeline

Version: 0.1.0 Date: October 08, 2025 SPDX-License-Identifier: BSD-3-Clause License File: See the LICENSE file in the project root. Copyright: © 2025 Michael Gardner, A Bit of Help, Inc. Authors: Michael Gardner Status: Draft

Step-by-step tutorial for creating and running your first pipeline.

Creating a Pipeline

TODO: Add pipeline creation tutorial

Running the Pipeline

TODO: Add execution instructions

Understanding the Output

TODO: Add output explanation

Architecture Overview

Version: 0.1.0 Date: October 08, 2025 SPDX-License-Identifier: BSD-3-Clause License File: See the LICENSE file in the project root. Copyright: © 2025 Michael Gardner, A Bit of Help, Inc. Authors: Michael Gardner Status: Draft

High-level overview of the pipeline architecture.

Architectural Patterns

TODO: Extract from pipeline/src/lib.rs

Layers

TODO: Describe Domain, Application, Infrastructure layers

Design Goals

TODO: Add design goals

Design Principles

Version: 0.1.0 Date: October 08, 2025 SPDX-License-Identifier: BSD-3-Clause License File: See the LICENSE file in the project root. Copyright: © 2025 Michael Gardner, A Bit of Help, Inc. Authors: Michael Gardner Status: Draft

Core design principles guiding the pipeline architecture.

Domain-Driven Design

TODO: Add DDD principles

Clean Architecture

TODO: Add clean architecture principles

SOLID Principles

TODO: Add SOLID application

Project Structure

Version: 0.1.0 Date: October 08, 2025 SPDX-License-Identifier: BSD-3-Clause License File: See the LICENSE file in the project root. Copyright: © 2025 Michael Gardner, A Bit of Help, Inc. Authors: Michael Gardner Status: Draft

Organization of the codebase and key directories.

Directory Layout

TODO: Add directory structure

Workspace Organization

TODO: Add workspace explanation

Module Organization

TODO: Add module structure

Software Requirements Specification (SRS)

Version: 0.1.0 Date: October 08, 2025 SPDX-License-Identifier: BSD-3-Clause License File: See the LICENSE file in the project root. Copyright: © 2025 Michael Gardner, A Bit of Help, Inc. Authors: Michael Gardner Status: Draft


1. Introduction

1.1 Purpose

This Software Requirements Specification (SRS) defines the functional and non-functional requirements for the Adaptive Pipeline system, a high-performance file processing pipeline implemented in Rust using Domain-Driven Design, Clean Architecture, and Hexagonal Architecture patterns.

Intended Audience:

  • Software developers implementing pipeline features
  • Quality assurance engineers designing test plans
  • System architects evaluating design decisions
  • Project stakeholders reviewing system capabilities

1.2 Scope

System Name: Adaptive Pipeline

System Purpose: Provide a configurable, extensible pipeline for processing files through multiple stages including compression, encryption, integrity verification, and custom transformations.

Key Capabilities:

  • Multi-stage file processing with configurable pipelines
  • Built-in stage types: Compression (Brotli, Gzip, Zstd, LZ4), Encryption (AES-256-GCM, ChaCha20-Poly1305), Integrity verification (SHA-256, SHA-512, BLAKE3)
  • Custom stage extensibility: Create domain-specific stages (sanitization, transformation, validation, enrichment, watermarking) through trait-based extension system
  • Binary format (.adapipe) for processed files with embedded metadata
  • Asynchronous, concurrent processing with resource management
  • Plugin-ready architecture for loading external stage implementations
  • Comprehensive metrics and observability with Prometheus integration

Out of Scope:

  • Distributed processing across multiple machines
  • Real-time streaming protocols
  • Network-based file transfer
  • GUI/Web interface
  • Cloud service integration

1.3 Definitions, Acronyms, and Abbreviations

TermDefinition
AEADAuthenticated Encryption with Associated Data
DDDDomain-Driven Design
DIPDependency Inversion Principle
E2EEnd-to-End
I/OInput/Output
KDFKey Derivation Function
PIIPersonally Identifiable Information
SLAService Level Agreement
SRSSoftware Requirements Specification

Domain Terms:

  • Pipeline: Ordered sequence of processing stages
  • Stage: Individual processing operation (compression, encryption, etc.)
  • Chunk: Fixed-size portion of file data for streaming processing
  • Context: Shared state and metrics during pipeline execution
  • Aggregate: Domain entity representing complete pipeline configuration

1.4 References

  • Domain-Driven Design: Eric Evans, 2003
  • Clean Architecture: Robert C. Martin, 2017
  • Rust Programming Language: https://www.rust-lang.org/
  • Tokio Asynchronous Runtime: https://tokio.rs/
  • Criterion Benchmarking: https://github.com/bheisler/criterion.rs

1.5 Overview

This SRS is organized as follows:

  • Section 2: Overall system description and context
  • Section 3: Functional requirements organized by feature
  • Section 4: Non-functional requirements (performance, security, etc.)
  • Section 5: System interfaces and integration points
  • Section 6: Requirements traceability matrix

2. Overall Description

2.1 Product Perspective

The Adaptive Pipeline is a standalone library and CLI application for file processing. It operates as:

Architectural Context:

┌─────────────────────────────────────────────────┐
│         CLI Application Layer                   │
│  (Command parsing, progress display, output)    │
├─────────────────────────────────────────────────┤
│         Application Layer                        │
│  (Use cases, orchestration, workflow control)   │
├─────────────────────────────────────────────────┤
│         Domain Layer                             │
│  (Business logic, entities, domain services)    │
├─────────────────────────────────────────────────┤
│         Infrastructure Layer                     │
│  (I/O, persistence, metrics, adapters)          │
└─────────────────────────────────────────────────┘
         ▼                    ▼                ▼
    File System         SQLite DB       System Resources

System Interfaces:

  • Input: File system files (any binary format)
  • Output: Processed files (.adapipe format) or restored original files
  • Configuration: TOML configuration files or command-line arguments
  • Persistence: SQLite database for pipeline metadata
  • Monitoring: Prometheus metrics endpoint (HTTP)

2.2 Product Functions

Primary Functions:

  1. Pipeline Configuration

    • Define multi-stage processing workflows
    • Configure compression, encryption, and custom stages
    • Persist and retrieve pipeline configurations
  2. File Processing

    • Read files in configurable chunks
    • Apply compression algorithms with configurable levels
    • Encrypt data with authenticated encryption
    • Calculate and verify integrity checksums
    • Write processed data in .adapipe binary format
  3. File Restoration

    • Read .adapipe formatted files
    • Extract metadata and processing steps
    • Reverse processing stages (decrypt, decompress)
    • Restore original files with integrity verification
  4. Resource Management

    • Control CPU utilization with token-based concurrency
    • Limit memory usage with configurable thresholds
    • Manage I/O operations with adaptive throttling
    • Track and report resource consumption
  5. Observability

    • Collect processing metrics (throughput, latency, errors)
    • Export metrics in Prometheus format
    • Provide structured logging with tracing
    • Generate performance reports

2.3 User Classes and Characteristics

User ClassCharacteristicsTechnical Expertise
Application DevelopersIntegrate pipeline into applicationsHigh (Rust programming)
CLI UsersProcess files via command-line interfaceMedium (command-line tools)
DevOps EngineersDeploy and monitor pipeline servicesMedium-High (systems administration)
Library ConsumersUse pipeline as Rust library dependencyHigh (Rust ecosystem)

2.4 Operating Environment

Supported Platforms:

  • Linux (x86_64, aarch64)
  • macOS (x86_64, Apple Silicon)
  • Windows (x86_64) - Best effort support

Runtime Requirements:

  • Rust 1.75 or later
  • Tokio asynchronous runtime
  • SQLite 3.35 or later (for persistence)
  • Minimum 512 MB RAM
  • Disk space proportional to processing needs

Build Requirements:

  • Rust toolchain (rustc, cargo)
  • C compiler (for SQLite, compression libraries)
  • pkg-config (Linux/macOS)

2.5 Design and Implementation Constraints

Architectural Constraints:

  • Must follow Domain-Driven Design principles
  • Must maintain layer separation (domain, application, infrastructure)
  • Domain layer must have no external dependencies
  • Must use Dependency Inversion Principle throughout

Technical Constraints:

  • Implemented in Rust (no other programming languages)
  • Asynchronous operations must use Tokio runtime
  • CPU-bound operations must use Rayon thread pool
  • Database operations must use SQLx with compile-time query verification
  • All public APIs must be documented with rustdoc

Security Constraints:

  • Encryption keys must be zeroized on drop
  • No sensitive data in logs or error messages
  • All encryption must use authenticated encryption (AEAD)
  • File permissions must be preserved and validated

2.6 Assumptions and Dependencies

Assumptions:

  • Files being processed fit available disk space when chunked
  • File system supports atomic file operations
  • System clock is synchronized (for timestamps)
  • SQLite database file has appropriate permissions

Dependencies:

  • tokio: Asynchronous runtime (MIT/Apache-2.0)
  • serde: Serialization framework (MIT/Apache-2.0)
  • sqlx: SQL toolkit with compile-time checking (MIT/Apache-2.0)
  • prometheus: Metrics collection (Apache-2.0)
  • tracing: Structured logging (MIT)
  • rayon: Data parallelism library (MIT/Apache-2.0)

3. Functional Requirements

3.1 Pipeline Configuration (FR-CONFIG)

FR-CONFIG-001: Create Pipeline

Priority: High Description: System shall allow users to create a new pipeline configuration with a unique name and ordered sequence of stages.

Inputs:

  • Pipeline name (string, 1-100 characters)
  • List of pipeline stages with configuration

Processing:

  • Validate pipeline name uniqueness
  • Validate stage ordering and compatibility
  • Automatically add input/output checksum stages
  • Assign unique pipeline ID

Outputs:

  • Created Pipeline entity with ID
  • Success/failure status

Error Conditions:

  • Duplicate pipeline name
  • Invalid stage configuration
  • Empty stage list

FR-CONFIG-002: Configure Pipeline Stage

Priority: High Description: System shall allow configuration of individual pipeline stages with type-specific parameters.

Inputs:

  • Stage type (compression, encryption, transform, checksum)
  • Stage name (string)
  • Algorithm/method identifier
  • Configuration parameters (key-value map)
  • Parallel processing flag

Processing:

  • Validate stage type and algorithm compatibility
  • Validate configuration parameters for algorithm
  • Set default values for optional parameters

Outputs:

  • Configured PipelineStage entity
  • Validation results

Error Conditions:

  • Unsupported algorithm for stage type
  • Invalid configuration parameters
  • Missing required parameters

FR-CONFIG-003: Persist Pipeline Configuration

Priority: Medium Description: System shall persist pipeline configurations to SQLite database for retrieval and reuse.

Inputs:

  • Pipeline entity with stages

Processing:

  • Serialize pipeline configuration to database schema
  • Store pipeline metadata (name, description, timestamps)
  • Store stages with ordering and configuration
  • Commit transaction atomically

Outputs:

  • Persisted pipeline ID
  • Timestamp of persistence

Error Conditions:

  • Database connection failure
  • Disk space exhaustion
  • Transaction rollback

FR-CONFIG-004: Retrieve Pipeline Configuration

Priority: Medium Description: System shall retrieve persisted pipeline configurations by ID or name.

Inputs:

  • Pipeline ID or name

Processing:

  • Query database for pipeline record
  • Retrieve associated stages in order
  • Reconstruct Pipeline entity from database data

Outputs:

  • Pipeline entity with all stages
  • Metadata (creation time, last modified)

Error Conditions:

  • Pipeline not found
  • Database corruption
  • Deserialization failure

3.2 Compression Processing (FR-COMPRESS)

FR-COMPRESS-001: Compress Data

Priority: High Description: System shall compress file chunks using configurable compression algorithms and levels.

Inputs:

  • Input data chunk (FileChunk)
  • Compression algorithm (Brotli, Gzip, Zstd, LZ4)
  • Compression level (1-11, algorithm-dependent)
  • Processing context

Processing:

  • Select compression algorithm implementation
  • Apply compression to chunk data
  • Update processing metrics (bytes in/out, compression ratio)
  • Preserve chunk metadata (sequence number, offset)

Outputs:

  • Compressed FileChunk
  • Updated processing context with metrics

Error Conditions:

  • Compression algorithm failure
  • Memory allocation failure
  • Invalid compression level

Performance Requirements:

  • LZ4: ≥500 MB/s throughput
  • Zstd: ≥200 MB/s throughput
  • Brotli: ≥100 MB/s throughput

FR-COMPRESS-002: Decompress Data

Priority: High Description: System shall decompress previously compressed file chunks for restoration.

Inputs:

  • Compressed data chunk (FileChunk)
  • Compression algorithm identifier
  • Processing context

Processing:

  • Select decompression algorithm implementation
  • Apply decompression to chunk data
  • Verify decompressed size matches expectations
  • Update processing metrics

Outputs:

  • Decompressed FileChunk with original data
  • Updated processing context

Error Conditions:

  • Decompression algorithm mismatch
  • Corrupted compressed data
  • Decompression algorithm failure

FR-COMPRESS-003: Benchmark Compression

Priority: Low Description: System shall provide benchmarking capability for compression algorithms to select optimal algorithm.

Inputs:

  • Sample data
  • List of algorithms to benchmark
  • Benchmark duration or iteration count

Processing:

  • Run compression/decompression for each algorithm
  • Measure throughput, compression ratio, memory usage
  • Calculate statistics (mean, std dev, percentiles)

Outputs:

  • Benchmark results per algorithm
  • Recommendation based on criteria

Error Conditions:

  • Insufficient sample data
  • Benchmark timeout

3.3 Encryption Processing (FR-ENCRYPT)

FR-ENCRYPT-001: Encrypt Data

Priority: High Description: System shall encrypt file chunks using authenticated encryption algorithms with secure key management.

Inputs:

  • Input data chunk (FileChunk)
  • Encryption algorithm (AES-256-GCM, ChaCha20-Poly1305, XChaCha20-Poly1305)
  • Encryption key or key derivation parameters
  • Security context

Processing:

  • Derive encryption key if password-based (Argon2, Scrypt, PBKDF2)
  • Generate random nonce for AEAD
  • Encrypt chunk data with authentication tag
  • Prepend nonce to ciphertext
  • Update processing metrics

Outputs:

  • Encrypted FileChunk (nonce + ciphertext + auth tag)
  • Updated processing context

Error Conditions:

  • Key derivation failure
  • Encryption algorithm failure
  • Insufficient entropy for nonce

Security Requirements:

  • Keys must be zeroized after use
  • Nonces must never repeat for same key
  • Authentication tags must be verified on decryption

FR-ENCRYPT-002: Decrypt Data

Priority: High Description: System shall decrypt and authenticate previously encrypted file chunks.

Inputs:

  • Encrypted data chunk (FileChunk with nonce + ciphertext)
  • Encryption algorithm identifier
  • Decryption key or derivation parameters
  • Security context

Processing:

  • Extract nonce from chunk data
  • Derive decryption key if password-based
  • Decrypt and verify authentication tag
  • Update processing metrics

Outputs:

  • Decrypted FileChunk with plaintext
  • Authentication verification result

Error Conditions:

  • Authentication failure (data tampered)
  • Decryption algorithm mismatch
  • Invalid decryption key
  • Corrupted nonce or ciphertext

FR-ENCRYPT-003: Key Derivation

Priority: High Description: System shall derive encryption keys from passwords using memory-hard key derivation functions.

Inputs:

  • Password or passphrase
  • KDF algorithm (Argon2, Scrypt, PBKDF2)
  • Salt (random or provided)
  • KDF parameters (iterations, memory, parallelism)

Processing:

  • Generate cryptographic random salt if not provided
  • Apply KDF with specified parameters
  • Produce key material of required length
  • Zeroize password from memory

Outputs:

  • Derived encryption key
  • Salt used (for storage/retrieval)

Error Conditions:

  • Insufficient memory for KDF
  • Invalid KDF parameters
  • Weak password (if validation enabled)

3.4 Integrity Verification (FR-INTEGRITY)

FR-INTEGRITY-001: Calculate Checksum

Priority: High Description: System shall calculate cryptographic checksums for file chunks and complete files.

Inputs:

  • Input data (FileChunk or complete file)
  • Checksum algorithm (SHA-256, SHA-512, BLAKE3, MD5)
  • Processing context

Processing:

  • Initialize checksum algorithm state
  • Process data through hash function
  • Finalize and produce checksum digest
  • Update processing metrics

Outputs:

  • Checksum digest (hex string or bytes)
  • Updated processing context

Error Conditions:

  • Unsupported checksum algorithm
  • Hash calculation failure

Performance Requirements:

  • SHA-256: ≥400 MB/s throughput
  • BLAKE3: ≥3 GB/s throughput (with SIMD)

FR-INTEGRITY-002: Verify Checksum

Priority: High Description: System shall verify data integrity by comparing calculated checksums against expected values.

Inputs:

  • Data to verify
  • Expected checksum
  • Checksum algorithm

Processing:

  • Calculate checksum of provided data
  • Compare calculated vs. expected (constant-time)
  • Record verification result

Outputs:

  • Verification success/failure
  • Calculated checksum (for diagnostics)

Error Conditions:

  • Checksum mismatch (integrity failure)
  • Algorithm mismatch
  • Malformed expected checksum

FR-INTEGRITY-003: Automatic Checksum Stages

Priority: High Description: System shall automatically add input and output checksum stages to all pipelines.

Inputs:

  • User-defined pipeline stages

Processing:

  • Insert input checksum stage at position 0
  • Append output checksum stage at final position
  • Reorder user stages to positions 1..n

Outputs:

  • Pipeline with automatic checksum stages
  • Updated stage ordering

Error Conditions:

  • None (always succeeds)

3.5 Binary Format (FR-FORMAT)

FR-FORMAT-001: Write .adapipe File

Priority: High Description: System shall write processed data to .adapipe binary format with embedded metadata.

Inputs:

  • Processed file chunks
  • File header metadata (original name, size, checksum, processing steps)
  • Output file path

Processing:

  • Write chunks to file sequentially or in parallel
  • Serialize metadata header to JSON
  • Calculate header length and format version
  • Write footer with magic bytes, version, header length
  • Structure: [CHUNKS][JSON_HEADER][HEADER_LENGTH][VERSION][MAGIC]

Outputs:

  • .adapipe format file
  • Total bytes written

Error Conditions:

  • Disk space exhaustion
  • Permission denied
  • I/O error during write

Format Requirements:

  • Magic bytes: "ADAPIPE\0" (8 bytes)
  • Format version: 2 bytes (little-endian)
  • Header length: 4 bytes (little-endian)
  • JSON header: UTF-8 encoded

FR-FORMAT-002: Read .adapipe File

Priority: High Description: System shall read .adapipe format files and extract metadata and processed data.

Inputs:

  • .adapipe file path

Processing:

  • Read and validate magic bytes from file end
  • Read format version and header length
  • Read and parse JSON header
  • Verify header structure and required fields
  • Stream chunk data from file

Outputs:

  • File header metadata
  • Chunk data reader for streaming

Error Conditions:

  • Invalid magic bytes (not .adapipe format)
  • Unsupported format version
  • Corrupted header
  • Malformed JSON

FR-FORMAT-003: Validate .adapipe File

Priority: Medium Description: System shall validate .adapipe file structure and integrity without full restoration.

Inputs:

  • .adapipe file path

Processing:

  • Verify magic bytes and format version
  • Parse and validate header structure
  • Verify checksum in metadata
  • Check chunk count matches header

Outputs:

  • Validation result (valid/invalid)
  • Validation errors if invalid
  • File metadata summary

Error Conditions:

  • File format errors
  • Checksum mismatch
  • Missing required metadata fields

3.6 Resource Management (FR-RESOURCE)

FR-RESOURCE-001: CPU Token Management

Priority: High Description: System shall limit concurrent CPU-bound operations using token-based semaphore system.

Inputs:

  • Maximum CPU tokens (default: number of CPU cores)
  • Operation requiring CPU token

Processing:

  • Acquire CPU token before CPU-bound operation
  • Block if no tokens available
  • Release token after operation completes
  • Track token usage metrics

Outputs:

  • Token acquisition success
  • Operation execution

Error Conditions:

  • Token acquisition timeout
  • Semaphore errors

Performance Requirements:

  • Token acquisition overhead: <1µs
  • Fair token distribution (no starvation)

FR-RESOURCE-002: I/O Token Management

Priority: High Description: System shall limit concurrent I/O operations to prevent resource exhaustion.

Inputs:

  • Maximum I/O tokens (configurable)
  • I/O operation requiring token

Processing:

  • Acquire I/O token before I/O operation
  • Block if no tokens available
  • Release token after I/O completes
  • Track I/O operation metrics

Outputs:

  • Token acquisition success
  • I/O operation execution

Error Conditions:

  • Token acquisition timeout
  • I/O operation failure

FR-RESOURCE-003: Memory Tracking

Priority: Medium Description: System shall track memory usage and enforce configurable memory limits.

Inputs:

  • Maximum memory threshold
  • Memory allocation operation

Processing:

  • Track current memory usage with atomic counter
  • Check against threshold before allocation
  • Increment counter on allocation
  • Decrement counter on deallocation (via RAII guard)

Outputs:

  • Allocation success/failure
  • Current memory usage

Error Conditions:

  • Memory limit exceeded
  • Memory tracking overflow

3.7 Metrics and Observability (FR-METRICS)

FR-METRICS-001: Collect Processing Metrics

Priority: Medium Description: System shall collect detailed metrics during pipeline processing operations.

Metrics Collected:

  • Bytes processed (input/output)
  • Processing duration (total, per stage)
  • Throughput (MB/s)
  • Compression ratio
  • Error count and types
  • Active operations count
  • Queue depth

Outputs:

  • ProcessingMetrics entity
  • Real-time metric updates

Error Conditions:

  • Metric overflow
  • Invalid metric values

FR-METRICS-002: Export Prometheus Metrics

Priority: Medium Description: System shall export metrics in Prometheus format via HTTP endpoint.

Inputs:

  • HTTP GET request to /metrics endpoint

Processing:

  • Collect current metric values from all collectors
  • Format metrics in Prometheus text format
  • Include metric type, help text, labels

Outputs:

  • HTTP 200 response with Prometheus metrics
  • Content-Type: text/plain; version=0.0.4

Error Conditions:

  • Metrics collection failure
  • HTTP server error

Metrics Exported:

pipelines_processed_total{status="success|error"}
pipeline_processing_duration_seconds{quantile="0.5|0.9|0.99"}
pipeline_bytes_processed_total
pipeline_chunks_processed_total
throughput_mbps
compression_ratio

FR-METRICS-003: Structured Logging

Priority: Medium Description: System shall provide structured logging with configurable log levels and tracing integration.

Inputs:

  • Log events from application code
  • Log level filter (error, warn, info, debug, trace)

Processing:

  • Format log events with structured fields
  • Include span context for distributed tracing
  • Route to configured log outputs (stdout, file, etc.)
  • Filter based on log level configuration

Outputs:

  • Structured log messages with JSON or key-value format
  • Trace spans for operation context

Error Conditions:

  • Log output failure (disk full, etc.)
  • Invalid log configuration

3.8 Custom Stage Extensibility (FR-CUSTOM)

FR-CUSTOM-001: Define Custom Stage Types

Priority: High Description: System shall allow developers to define custom stage types by extending the StageType enum and implementing stage-specific logic.

Inputs:

  • New StageType enum variant
  • Stage-specific configuration parameters
  • Stage metadata (name, description)

Processing:

  • Register custom stage type in system
  • Validate stage type uniqueness
  • Associate configuration schema with stage type

Outputs:

  • Registered custom stage type
  • Stage type available for pipeline configuration

Error Conditions:

  • Duplicate stage type name
  • Invalid stage type identifier
  • Configuration schema validation failure

Extension Points:

  • StageType enum in domain layer
  • Display and FromStr trait implementations
  • Stage configuration validation

FR-CUSTOM-002: Implement Custom Stage Logic

Priority: High Description: System shall provide extension points for implementing custom stage processing logic through domain service traits.

Inputs:

  • Domain service trait definition
  • Infrastructure adapter implementation
  • Processing algorithm for file chunks

Processing:

  • Define domain service trait (e.g., SanitizationService, TransformationService)
  • Implement infrastructure adapter with concrete algorithm
  • Register adapter with dependency injection container
  • Integrate with StageExecutor for execution

Outputs:

  • Functional custom stage implementation
  • Stage available for use in pipelines

Error Conditions:

  • Trait method signature mismatch
  • Missing required trait bounds (Send + Sync)
  • Registration failure
  • Incompatible chunk processing logic

Implementation Requirements:

  • Must be async-compatible (async_trait)
  • Must support parallel chunk processing
  • Must update ProcessingContext metrics
  • Must handle errors through Result types

FR-CUSTOM-003: Register Custom Stages

Priority: High Description: System shall provide registration mechanism for custom stages with the StageExecutor.

Inputs:

  • Custom stage type identifier
  • StageExecutor implementation
  • Supported algorithm identifiers

Processing:

  • Validate stage executor implementation
  • Register executor with system registry
  • Associate stage type with executor
  • Enable stage in pipeline configuration

Outputs:

  • Registered stage executor
  • Stage type available in CLI and API

Error Conditions:

  • Executor registration conflict
  • Invalid stage type reference
  • Missing required executor methods

Registration Methods:

  • Compile-time registration (preferred)
  • Runtime registration via plugin interface
  • Configuration-based registration

FR-CUSTOM-004: Validate Custom Stage Configuration

Priority: Medium Description: System shall validate custom stage configurations against stage-specific schemas.

Inputs:

  • Custom stage configuration
  • Configuration schema definition
  • Stage-specific validation rules

Processing:

  • Parse configuration parameters
  • Validate against schema (types, ranges, formats)
  • Check required vs optional parameters
  • Validate parameter compatibility

Outputs:

  • Validated configuration
  • Configuration errors if invalid

Error Conditions:

  • Missing required parameters
  • Invalid parameter types
  • Parameter value out of range
  • Incompatible parameter combinations

FR-CUSTOM-005: Custom Stage Lifecycle Management

Priority: Medium Description: System shall support initialization and cleanup for custom stages through lifecycle hooks.

Inputs:

  • Stage initialization parameters
  • Processing context
  • Cleanup triggers (success, failure, always)

Processing:

  • Call prepare_stage() before first execution
  • Allocate stage-specific resources
  • Execute stage processing
  • Call cleanup_stage() after completion or failure
  • Release resources and finalize state

Outputs:

  • Initialized stage ready for processing
  • Clean resource cleanup after execution

Error Conditions:

  • Initialization failure
  • Resource allocation failure
  • Cleanup failure (logged but not propagated)

Lifecycle Methods:

  • prepare_stage(): Initialize stage resources
  • cleanup_stage(): Release resources and cleanup
  • Resource management through RAII patterns

FR-CUSTOM-006: Custom Stage Examples

Priority: Low Description: System shall provide comprehensive examples of custom stage implementations for common use cases.

Example Use Cases:

  • Data Sanitization: Remove PII, redact sensitive fields
  • Data Transformation: Convert XML to JSON, restructure data
  • Data Validation: Schema validation, format checking
  • Data Enrichment: Add timestamps, inject metadata
  • Watermarking: Add digital watermarks to content
  • Deduplication: Remove duplicate data blocks

Deliverables:

  • Example implementations in examples/custom-stages/
  • Documentation in pipeline/docs/src/advanced/custom-stages.md
  • Integration tests demonstrating usage
  • Performance benchmarks for common patterns

Error Conditions:

  • None (documentation and examples)

4. Non-Functional Requirements

4.1 Performance Requirements (NFR-PERF)

NFR-PERF-001: Processing Throughput

Requirement: System shall achieve minimum throughput of 100 MB/s for file processing on standard hardware.

Measurement:

  • Hardware: 4-core CPU, 8 GB RAM, SSD storage
  • File size: 100 MB
  • Configuration: Zstd compression (level 6), no encryption

Acceptance Criteria:

  • Average throughput ≥ 100 MB/s over 10 runs
  • P95 throughput ≥ 80 MB/s

NFR-PERF-002: Processing Latency

Requirement: System shall complete small file processing (1 MB) in under 50ms.

Measurement:

  • File size: 1 MB
  • Configuration: LZ4 compression (fastest), no encryption
  • End-to-end latency from read to write

Acceptance Criteria:

  • P50 latency < 30ms
  • P95 latency < 50ms
  • P99 latency < 100ms

NFR-PERF-003: Resource Efficiency

Requirement: System shall process files with memory usage proportional to chunk size, not file size.

Measurement:

  • Process 1 GB file with 64 KB chunks
  • Monitor peak memory usage

Acceptance Criteria:

  • Peak memory < 100 MB for any file size
  • Memory scales with concurrency, not file size

NFR-PERF-004: Concurrent Processing

Requirement: System shall support concurrent processing of multiple files up to CPU core count.

Measurement:

  • Number of concurrent file processing operations
  • CPU utilization and throughput

Acceptance Criteria:

  • Support N concurrent operations where N = CPU core count
  • Linear throughput scaling up to N operations
  • CPU utilization > 80% during concurrent processing

4.2 Security Requirements (NFR-SEC)

NFR-SEC-001: Encryption Strength

Requirement: System shall use only authenticated encryption algorithms with minimum 128-bit security level.

Compliance:

  • AES-256-GCM (256-bit key, 128-bit security level)
  • ChaCha20-Poly1305 (256-bit key, 256-bit security level)
  • XChaCha20-Poly1305 (256-bit key, 256-bit security level)

Acceptance Criteria:

  • No unauthenticated encryption algorithms
  • All encryption provides integrity verification
  • Key sizes meet NIST recommendations

NFR-SEC-002: Key Management

Requirement: System shall securely handle encryption keys with automatic zeroization.

Implementation:

  • Keys zeroized on drop (using zeroize crate)
  • Keys never written to logs or error messages
  • Keys stored in protected memory when possible

Acceptance Criteria:

  • Memory analysis shows key zeroization
  • No keys in log files or error output
  • Key derivation uses memory-hard functions

NFR-SEC-003: Authentication Verification

Requirement: System shall verify authentication tags and reject tampered data.

Implementation:

  • AEAD authentication tags verified before decryption
  • Constant-time comparison to prevent timing attacks
  • Immediate rejection of invalid authentication

Acceptance Criteria:

  • Tampered ciphertext always rejected
  • Authentication failure detectable
  • No partial decryption of unauthenticated data

NFR-SEC-004: Input Validation

Requirement: System shall validate all external inputs to prevent injection and path traversal attacks.

Implementation:

  • File paths validated and sanitized
  • Configuration parameters validated against schemas
  • Database queries use parameterized statements
  • No direct execution of user-provided code

Acceptance Criteria:

  • Path traversal attacks blocked
  • SQL injection not possible
  • Invalid configurations rejected

4.3 Reliability Requirements (NFR-REL)

NFR-REL-001: Error Handling

Requirement: System shall handle errors gracefully without data loss or corruption.

Implementation:

  • All errors propagated through Result types
  • No panics in library code (CLI may panic on fatal errors)
  • Partial results discarded on pipeline failure
  • Database transactions rolled back on error

Acceptance Criteria:

  • No silent failures
  • Error messages include context
  • No data corruption on error paths
  • Recovery possible from transient errors

NFR-REL-002: Data Integrity

Requirement: System shall detect data corruption through checksums and reject corrupted data.

Implementation:

  • Input checksum calculated before processing
  • Output checksum calculated after processing
  • Checksum verification on restoration
  • Authentication tags on encrypted data

Acceptance Criteria:

  • Bit flip detection rate: 100%
  • No false positives in integrity checks
  • Corrupted data always rejected

NFR-REL-003: Atomic Operations

Requirement: System shall perform file operations atomically to prevent partial writes.

Implementation:

  • Write to temporary files, then atomic rename
  • Database transactions for metadata updates
  • Rollback on failure

Acceptance Criteria:

  • No partially written output files
  • Database consistency maintained
  • Recovery possible from interrupted operations

4.4 Maintainability Requirements (NFR-MAINT)

NFR-MAINT-001: Code Documentation

Requirement: All public APIs shall have rustdoc documentation with examples.

Coverage:

  • Public functions, structs, enums documented
  • Example code for complex APIs
  • Error conditions documented
  • Panic conditions documented (if any)

Acceptance Criteria:

  • cargo doc succeeds without warnings
  • Documentation coverage > 90%
  • Examples compile and run

NFR-MAINT-002: Architectural Compliance

Requirement: System shall maintain strict layer separation per Clean Architecture.

Rules:

  • Domain layer: No dependencies on infrastructure
  • Application layer: Depends on domain only
  • Infrastructure layer: Implements domain interfaces

Acceptance Criteria:

  • Architecture tests pass
  • Dependency graph validated
  • No circular dependencies

NFR-MAINT-003: Test Coverage

Requirement: System shall maintain comprehensive test coverage.

Coverage Targets:

  • Line coverage: > 80%
  • Branch coverage: > 70%
  • Critical paths (encryption, integrity): 100%

Test Types:

  • Unit tests for all modules
  • Integration tests for layer interaction
  • E2E tests for complete workflows

Acceptance Criteria:

  • All tests pass in CI
  • Coverage reports generated
  • Critical functionality fully tested

4.5 Portability Requirements (NFR-PORT)

NFR-PORT-001: Platform Support

Requirement: System shall compile and run on Linux, macOS, and Windows.

Platforms:

  • Linux: Ubuntu 20.04+, RHEL 8+
  • macOS: 10.15+ (Intel and Apple Silicon)
  • Windows: 10+ (x86_64)

Acceptance Criteria:

  • CI tests pass on all platforms
  • Platform-specific code isolated
  • Feature parity across platforms

NFR-PORT-002: Rust Version Compatibility

Requirement: System shall support stable Rust toolchain.

Rust Version:

  • Minimum: Rust 1.75
  • Recommended: Latest stable

Acceptance Criteria:

  • Compiles on minimum Rust version
  • No nightly-only features
  • MSRV documented in README

4.6 Usability Requirements (NFR-USE)

NFR-USE-001: CLI Usability

Requirement: CLI shall provide clear help text, progress indication, and error messages.

Features:

  • --help displays usage information
  • Progress bar for long operations
  • Colored output for errors and warnings
  • Verbose mode for debugging

Acceptance Criteria:

  • Help text covers all commands
  • Progress updates at least every second
  • Error messages actionable

NFR-USE-002: API Ergonomics

Requirement: Library API shall follow Rust conventions and idioms.

Conventions:

  • Builder pattern for complex types
  • Method chaining where appropriate
  • Descriptive error types
  • No unnecessary lifetimes or generics

Acceptance Criteria:

  • API lint (clippy) warnings addressed
  • API documentation clear
  • Example code idiomatic

4.7 Extensibility Requirements (NFR-EXT)

NFR-EXT-001: Custom Stage Support

Requirement: System architecture shall support custom stage implementations without modifying core library code.

Extension Mechanisms:

  • Trait-Based Extension: Define custom stages via trait implementation
  • Type System Extension: Add StageType enum variants
  • Registration System: Register custom stages at compile-time or runtime
  • Configuration Extension: Support stage-specific configuration schemas

Acceptance Criteria:

  • Custom stages implementable without forking core library
  • No breaking changes required in domain layer
  • Registration mechanism well-documented
  • Examples provided for common patterns

NFR-EXT-002: Plugin Architecture

Requirement: System shall support plugin-style custom stages with dynamic loading capabilities (future).

Design Goals:

  • Isolated custom stage code from core library
  • Safe loading of external stage implementations
  • Version compatibility checking
  • Dependency management for plugins

Acceptance Criteria:

  • Plugin interface defined and documented
  • Safe sandboxing of plugin code
  • Graceful handling of plugin failures
  • Plugin compatibility matrix maintained

NFR-EXT-003: Extension Documentation

Requirement: System shall provide comprehensive documentation for creating custom stages.

Documentation Requirements:

  • Step-by-step implementation guide
  • Complete working examples
  • API reference for extension points
  • Best practices and patterns
  • Performance tuning guidelines
  • Testing strategies for custom stages

Acceptance Criteria:

  • Developer can implement custom stage in < 2 hours
  • All extension points documented with examples
  • Common pitfalls documented with solutions
  • Documentation tested by external developers

NFR-EXT-004: Backward Compatibility

Requirement: System shall maintain backward compatibility for custom stage implementations across minor version updates.

Compatibility Guarantees:

  • Trait signatures stable across minor versions
  • Deprecation warnings for breaking changes
  • Migration guides for major version updates
  • Semantic versioning strictly followed

Acceptance Criteria:

  • Custom stages compile across patch versions
  • Breaking changes only in major versions
  • Deprecation period: minimum 2 minor versions
  • Migration guides published before major releases

NFR-EXT-005: Extension Performance

Requirement: Custom stage infrastructure shall impose minimal performance overhead (<5%) compared to built-in stages.

Performance Goals:

  • Trait dispatch overhead: <1% of processing time
  • No unnecessary allocations in hot paths
  • Zero-cost abstractions where possible
  • Efficient resource sharing

Acceptance Criteria:

  • Benchmarks show <5% overhead
  • Custom stage throughput ≥ 95% of built-in stages
  • Memory overhead minimal (documented per-stage)

5. System Interfaces

5.1 File System Interface

Description: System interacts with file system for reading input files and writing output files.

Operations:

  • Read files (sequential, chunked, memory-mapped)
  • Write files (buffered, with fsync option)
  • List directories
  • Query file metadata (size, permissions, timestamps)
  • Create temporary files

Error Handling:

  • File not found → PipelineError::IOError
  • Permission denied → PipelineError::IOError
  • Disk full → PipelineError::IOError

5.2 Database Interface

Description: System uses SQLite for persisting pipeline configurations and metadata.

Schema:

CREATE TABLE pipelines (
    id TEXT PRIMARY KEY,
    name TEXT UNIQUE NOT NULL,
    description TEXT,
    created_at TEXT NOT NULL,
    updated_at TEXT NOT NULL
);

CREATE TABLE pipeline_stages (
    id TEXT PRIMARY KEY,
    pipeline_id TEXT NOT NULL,
    stage_type TEXT NOT NULL,
    stage_name TEXT NOT NULL,
    order_index INTEGER NOT NULL,
    configuration TEXT NOT NULL,
    FOREIGN KEY (pipeline_id) REFERENCES pipelines(id)
);

Operations:

  • Insert pipeline configuration
  • Query pipeline by ID or name
  • Update pipeline metadata
  • Delete pipeline and stages

Error Handling:

  • Connection failure → PipelineError::DatabaseError
  • Constraint violation → PipelineError::DatabaseError
  • Query error → PipelineError::DatabaseError

5.3 Metrics Interface (HTTP)

Description: System exposes Prometheus metrics via HTTP endpoint.

Endpoint: GET /metrics

Response Format:

# HELP pipeline_bytes_processed_total Total bytes processed
# TYPE pipeline_bytes_processed_total counter
pipeline_bytes_processed_total 1048576

# HELP pipeline_processing_duration_seconds Processing duration
# TYPE pipeline_processing_duration_seconds histogram
pipeline_processing_duration_seconds_bucket{le="0.1"} 10
pipeline_processing_duration_seconds_bucket{le="0.5"} 25
...

Error Handling:

  • Server error → HTTP 500
  • Not found → HTTP 404

5.4 Configuration Interface

Description: System reads configuration from TOML files and command-line arguments.

Configuration Files:

[pipeline]
default_chunk_size = 65536
max_memory_mb = 1024

[compression]
default_algorithm = "zstd"
default_level = 6

[encryption]
default_algorithm = "aes256gcm"
key_derivation = "argon2"

[database]
path = "./pipeline.db"

Command-Line Arguments:

pipeline process --input file.txt --output file.adapipe --compress zstd --encrypt aes256gcm

6. Requirements Traceability Matrix

Requirement IDFeatureTest CoverageDocumentation
FR-CONFIG-001Create Pipelinetest_pipeline_creationpipeline.md
FR-CONFIG-002Configure Stagetest_stage_configurationcustom-stages.md
FR-CONFIG-003Persist Pipelinetest_pipeline_persistencepersistence.md
FR-CONFIG-004Retrieve Pipelinetest_pipeline_retrievalpersistence.md
FR-COMPRESS-001Compress Datatest_compression_algorithmscompression.md
FR-COMPRESS-002Decompress Datatest_decompression_roundtripcompression.md
FR-COMPRESS-003Benchmark Compressionbench_compressionbenchmarking.md
FR-ENCRYPT-001Encrypt Datatest_encryption_algorithmsencryption.md
FR-ENCRYPT-002Decrypt Datatest_decryption_roundtripencryption.md
FR-ENCRYPT-003Key Derivationtest_key_derivationencryption.md
FR-INTEGRITY-001Calculate Checksumtest_checksum_calculationintegrity.md
FR-INTEGRITY-002Verify Checksumtest_checksum_verificationintegrity.md
FR-INTEGRITY-003Auto Checksum Stagestest_automatic_checksumspipeline.md
FR-FORMAT-001Write .adapipetest_adapipe_writebinary-format.md
FR-FORMAT-002Read .adapipetest_adapipe_readbinary-format.md
FR-FORMAT-003Validate .adapipetest_adapipe_validationbinary-format.md
FR-RESOURCE-001CPU Tokenstest_cpu_token_managementresources.md
FR-RESOURCE-002I/O Tokenstest_io_token_managementresources.md
FR-RESOURCE-003Memory Trackingtest_memory_trackingresources.md
FR-METRICS-001Collect Metricstest_metrics_collectionmetrics.md
FR-METRICS-002Prometheus Exporttest_prometheus_exportobservability.md
FR-METRICS-003Structured Loggingtest_logginglogging.md
FR-CUSTOM-001Define Custom Stage Typestest_custom_stage_typecustom-stages.md
FR-CUSTOM-002Implement Custom Logictest_custom_stage_implementationcustom-stages.md
FR-CUSTOM-003Register Custom Stagestest_custom_stage_registrationcustom-stages.md
FR-CUSTOM-004Validate Custom Configtest_custom_configuration_validationcustom-stages.md
FR-CUSTOM-005Lifecycle Managementtest_custom_stage_lifecyclecustom-stages.md
FR-CUSTOM-006Custom Stage ExamplesIntegration testscustom-stages.md
NFR-PERF-001Throughputbench_file_ioperformance.md
NFR-PERF-002Latencybench_file_ioperformance.md
NFR-PERF-003Memory Efficiencytest_memory_usageresources.md
NFR-PERF-004Concurrencytest_concurrent_processingconcurrency.md
NFR-SEC-001Encryption StrengthSecurity reviewencryption.md
NFR-SEC-002Key Managementtest_key_zeroizationencryption.md
NFR-SEC-003Authenticationtest_authentication_failureencryption.md
NFR-SEC-004Input Validationtest_input_validation-
NFR-REL-001Error HandlingAll tests-
NFR-REL-002Data Integritytest_integrity_verificationintegrity.md
NFR-REL-003Atomic Operationstest_atomic_operationsfile-io.md
NFR-MAINT-001Documentationcargo doc-
NFR-MAINT-002Architecturearchitecture_compliance_testarchitecture/*
NFR-MAINT-003Test CoverageCI coverage report-
NFR-EXT-001Custom Stage Supporttest_custom_stagescustom-stages.md, extending.md
NFR-EXT-002Plugin ArchitectureDesign reviewextending.md
NFR-EXT-003Extension DocumentationDocumentation reviewcustom-stages.md
NFR-EXT-004Backward CompatibilityAPI stability tests-
NFR-EXT-005Extension Performancebench_custom_vs_builtinperformance.md

7. Appendices

Appendix A: Algorithm Support Matrix

CategoryAlgorithmPriorityPerformance Target
CompressionBrotliMedium100-150 MB/s
GzipHigh200-300 MB/s
ZstdHigh200-400 MB/s
LZ4High500-700 MB/s
EncryptionAES-256-GCMHigh800-1200 MB/s
ChaCha20-Poly1305High200-400 MB/s
XChaCha20-Poly1305Medium200-400 MB/s
ChecksumSHA-256High400-800 MB/s
SHA-512Medium600-1000 MB/s
BLAKE3High3-10 GB/s
MD5Low1-2 GB/s

Appendix B: Error Code Reference

Error CodeDescriptionRecovery Action
PipelineError::IOErrorFile system operation failedRetry, check permissions
PipelineError::CompressionErrorCompression/decompression failedVerify data integrity
PipelineError::EncryptionErrorEncryption/decryption failedCheck key, verify authentication
PipelineError::ValidationErrorData validation failedCheck input data format
PipelineError::DatabaseErrorDatabase operation failedCheck database connection
PipelineError::ResourceExhaustedResource limit exceededReduce concurrency, free resources

Appendix C: Custom Stage Use Cases

This appendix provides real-world examples of custom stage implementations to demonstrate the extensibility of the pipeline system.

C.1 Data Sanitization Stage

Purpose: Remove or redact Personally Identifiable Information (PII) from documents before archival or sharing.

Use Cases:

  • Healthcare: Redact patient names, SSN, medical record numbers from documents
  • Financial: Remove account numbers, credit card data from statements
  • Legal: Redact confidential information in discovery documents
  • HR: Anonymize employee data in reports

Implementation:

  • StageType: Sanitization
  • Algorithm examples: regex_redaction, named_entity_recognition, pattern_matching
  • Configuration: Rules for what to redact, replacement patterns, allowed/blocked terms

Benefits:

  • GDPR/HIPAA compliance
  • Safe data sharing
  • Privacy protection
  • Audit trail of sanitization

C.2 Data Transformation Stage

Purpose: Convert data between formats or restructure content.

Use Cases:

  • XML to JSON conversion for API modernization
  • CSV to Parquet for data lake ingestion
  • Document format conversion (DOCX → PDF)
  • Image format optimization (PNG → WebP)

Implementation:

  • StageType: Transform
  • Algorithm examples: xml_to_json, csv_to_parquet, image_optimize
  • Configuration: Source/target formats, transformation rules, quality settings

Benefits:

  • Automated format conversion
  • Data lake preparation
  • Storage optimization
  • API compatibility

C.3 Schema Validation Stage

Purpose: Validate data against schemas before processing or storage.

Use Cases:

  • JSON Schema validation for API payloads
  • XML Schema (XSD) validation for B2B integrations
  • Protobuf validation for microservices
  • Database schema compliance checking

Implementation:

  • StageType: Validation
  • Algorithm examples: json_schema, xml_schema, protobuf_validate
  • Configuration: Schema file path, validation strictness, error handling

Benefits:

  • Data quality assurance
  • Early error detection
  • Contract enforcement
  • Compliance verification

C.4 Data Enrichment Stage

Purpose: Add metadata, annotations, or derived fields to data.

Use Cases:

  • Add geolocation data based on IP addresses
  • Inject timestamps and processing metadata
  • Add classification tags based on content
  • Append audit trail information

Implementation:

  • StageType: Enrichment
  • Algorithm examples: geo_lookup, metadata_injection, content_classification
  • Configuration: Enrichment sources, field mappings, lookup tables

Benefits:

  • Enhanced analytics
  • Better searchability
  • Compliance tracking
  • Data lineage

C.5 Digital Watermarking Stage

Purpose: Embed imperceptible watermarks in content for provenance tracking.

Use Cases:

  • Document watermarking with user ID and timestamp
  • Image watermarking for copyright protection
  • PDF watermarking for leak detection
  • Video watermarking for piracy prevention

Implementation:

  • StageType: Watermark
  • Algorithm examples: steganography, visible_watermark, digital_signature
  • Configuration: Watermark content, embedding strength, detection keys

Benefits:

  • Copyright protection
  • Leak detection
  • Provenance tracking
  • Authenticity verification

C.6 Deduplication Stage

Purpose: Identify and remove duplicate data blocks for storage efficiency.

Use Cases:

  • Deduplicate file chunks in backups
  • Remove duplicate records in data sets
  • Content-addressed storage optimization
  • Incremental backup efficiency

Implementation:

  • StageType: Deduplication
  • Algorithm examples: fixed_block, variable_block, content_hash
  • Configuration: Block size, hash algorithm, dedup database

Benefits:

  • Storage savings (50-90% typical)
  • Network bandwidth reduction
  • Faster backup/restore
  • Cost optimization

C.7 Custom Stage Development Effort

Stage ComplexityDevelopment TimeTesting TimeTotal Effort
Simple (Validation)2-4 hours2-3 hours~1 day
Medium (Transformation)1-2 days1 day~3 days
Complex (ML-based Sanitization)3-5 days2-3 days~1 week

Prerequisites:

  • Rust programming experience
  • Understanding of pipeline architecture
  • Domain knowledge for stage-specific logic

Document Status: Draft Last Updated: 2025-01-04 Next Review: TBD Approver: TBD

Glossary

Version: 0.1.0 Date: October 08, 2025 SPDX-License-Identifier: BSD-3-Clause License File: See the LICENSE file in the project root. Copyright: © 2025 Michael Gardner, A Bit of Help, Inc. Authors: Michael Gardner Status: Draft

Definitions of key terms and concepts.

A

TODO: Add glossary terms

P

Pipeline - TODO

Pipeline Stage - TODO

S

Stage - TODO

API Documentation

Version: 0.1.0 Date: October 08, 2025 SPDX-License-Identifier: BSD-3-Clause License File: See the LICENSE file in the project root. Copyright: © 2025 Michael Gardner, A Bit of Help, Inc. Authors: Michael Gardner Status: Draft

Links to generated API documentation.

Generated API Docs

The complete API documentation is generated from source code documentation:

Building API Docs

make docs

This generates documentation at target/doc/pipeline/index.html.

Key Modules

TODO: Add key module links and descriptions